

THE CUTTING EDGE PCD.CVD-D.CBN

Expertise in special tools

Engine bloc

Material:

3.2581 (GAlSi12)

Tool:

2-Step PCD-Reamer Ø 84 NZ6 IKS HSK-A63

Machining:

Exit hole crank shaft
Casted part –stock 2-3mm/side

Cutting data: $v_C = 500 \text{ m/min}$ Reaming feed: $f_Z = 0.1 \text{ mm/tooth}$

Bearing Bracket

Material:

3.2163 (GD AlSi9Cu3)

Tool:

PCD-Spherical Milling Cutter Ø 22-85 NZ3 IKS HSK-A40

Machining:

Finish of der bearing aisle Ø45,7 twin spindle machine, pre-casted part, stock 1mm, parts clamped in line

Cutting data:

 $v_C = 600 \text{ m/min}$ $f_Z = 0.12 \text{ mm/tooth}$

Master Brake Cylinder

Material:

3.2371 (G-AlSi7Mg)

Tool:

PCD-Bell Milling Cutter Ø 50 IKS NZ4 HSK-A63

Machining:

Contour groove front face

Cutting data:

 v_C = 850 m/min = 5539 rpm Drilling and chamfering feed:

f = 0.5 mm/revCycle time: $t_h = 1.0 \text{ s}$

Component-specific solutions

Through-holes in cavities and chambers

Produce a hole without chips remaining in the component

Slab milling | Chips removed by suction effect

Cutting data: $v_C = 2236 \text{ m/min} \mid f_Z = 0.2 \text{ mm/rev}$ with conventional PCD milling cutter

with "chip-free" PCD milling cutter

Counterboring with the Z 5 high-feed finishing boring bar

Specially shaped cutting edge for defined surface roughness $R_Z 20 - 30 \mu m$ with 150 μm shaft spacing

